(lntel) Look Inside”

Intel® Inspector XE

Memory and thread debugger

Agenda

Intro to Intel® Inspector XE

Introduction

Memory problem analysis
Threading problem Analysis
Preparing setup for analysis
Managing analysis results
Advanced Features
Summary

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Agenda

Intro to Intel® Inspector XE

Introduction

Memory problem analysis
Threading problem Analysis
Preparing setup for analysis
Managing analysis results
Advanced Features
Summary

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Motivation for The Inspector XE

Memory Errors Threading Errors

Problems
D Problem So

P1 * Mismatched allocation... fin

e
main (7B52)
thread_video (G444)
threadstartex (8550)

P2 @ Invalid memory access fin
Pz @ Mernory leak fin

 Data Races
 Deadlocks
* Cross Stack References

* Invalid Accesses
 Memory Leaks
* Uninitialized Memory Accesses

Multi-threading problems

* Hard to reproduce, _
. Difficult to debug » Let the tool do it for you
* Expensive to fix

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Key Features at a glance

Data collection

Result analyses

GUI

Compilers
supported

oS

Languages

Optimization Notice

Dynamic Memory and Threading Analysis (including .NET* analysis)
MPI applications analysis

GUI data mining: source code analysis, filtering, exploring call paths, etc.
Debugger integration

Result comparison

Problem life cycle management

Command line interface (especially useful for regression testing)

Microsoft* Visual Studio IDE integration (2010, 2012 and 2013)
Stand alone GUI on both Windows* and Linux*

Microsoft* Visual* C++ and .NET*

Intel® C/C++ Compiler XE 12.0 or higher

Intel® Visual Fortran Compiler XE 12.0 or higher
gcc

Windows* 7, 8, 8.1,
Windows* Server 2008, 2008 R2, 2012
Linux*: RedHat, Fedora, CentOS, SUSE, Debian, Ubuntu

C/C++
C# (.NET 2.0 to 3.5, .NET 4.0 with limitations)
Fortran

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Workflow: setup project

find_and_fix_memory_errors - Project Properties 2

J Target] Suppressions] Binary/Symbol Search] Source Search]

Launch Application

Specify and configure your analysis target: an application or a script to execute. Press F1 for more details.

Inherit settings from Visual Studio* project: [find_and_fix_memory_errors
Application: Ch\Users\krogozhi\IXE 2015 beta\tachyon_insp_xe\vc10\find_and_fix_memon
Application parameters:
¥ | Use application directory as working directory
Working directory: Ch\Users\krogozhi\IXE 2015 beta\tachyon_insp_xe\vc10

Lser-defined envird

PATH=C:\Prograni SPecify Application, pg1s\redist\ia32\compiler,%PATHS%; PATH=C:\ Modify...
arguments and

Microsoft* runtime working directory

(®) Store result in the project directory: = C\Users\krogozhi\IXE 2015 beta\tachyon_insp_xe\vc10\My Inspector }

() Store result in (and create link file to) another directory

CAUsers\krogozhi\IXE 2015 beta\tachyon_insp_xe\vc10W\My Inspector XE Results - find_and_fix_nm| Browse...

oK Cancel

7/23/2014

(intel ‘ 6
Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Workflow: select analysis and start

Intel Inspector XE 2015

(| Configure Analysis Type

A Analysis Type

2. Click Start
; 10x-40x Detect Deadlocks
E] 200-80 Detect Deadlocks and Data Races
[
Locate Deadlocks and Data Races il
Tt E m Locate Deadlocks and Data Races
Memory Error Analysis Analysis Time Overhead Memory Overhead
Threading Error Analysis
Custom Analysis Types Locate Deadlocks and Data Races Copy
I Widest scope threading error analysis type. Maximizes the load on the system

: and the time and resources required to perform analysis; however, detects the

1. Select Analy5|s widest set of errors and provides context and maximum detail for those errors.

Type Press F1 for more details.

[| Terminate on deadlock

Stack frame depth: |16 W

Scope; Mormal W

Remove duplicates

Project Properties...

[| Use maximum resources

7/23/2014

ptimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Workflow: manage results

Fh?fl Intel Inspector XE 2015

Detect Deadlocks and Data Races
@ Target Analysis Type|| = Collection Log | K RITLTLETY Powerful filtration
Problems Double click on Problem feature
Da @ Type to navigate to source Stal Data race

=P @ Data race find_and_fix_threading_errors.cp.. find_and_fix_threading_errors.exe R New Source
=p2 = Data race winvideo.h find_and_fix_threading_errors.exe ' New find_and_fix_thre...
Data race winvideo.h:270 find_and_fix_threading_errors.exe R New task_scheduler_i..
Data race winvideo.h:270 find_and_fix_threading_errors.exe R New winvideo.h
ata race winvideo.h:201; winvideo.h:270 find_and_fix_threading_errors.exe Module
Code locations grouped -
into Problems to simplify
results management LTI 'main (4960)
Read winvideo.h:270 next_frame find_and_fix_threading_errors.exe thread_video (4672)

268 find and fix threading er ¥ TBB Worker Thread (2848)
269 if(!running) return false; find and fix threading er *TBB Worker Thread (1724)

270 g updates++; // Fast but inaccura)} .
271 if (!threaded) while (loop once (thi TBB Worker Thread (6004)
0t else if(g handles[1]) { Read: winvideo.h:270

ead winvideo.h:270 next_frame find_and_fix_threading_errors.exe

268 find and fix threading er Write: winvideo.h:270
269 if(!running) return false; find and fix threading er

270 g updates++; // Fast but inaccura
271 if (!threaded) while(loop once (thi
272 else if (g handle=[1]) {

7/23/2014

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Workflow: navigate to sources

@ e Intel Inspector XE 2015
IWrite - Thread TBB Worker Thread (1724) (find_and_fix_threading_errors.exe!next_frame - winvideo.h:270) g [
|winvideo.h | Disassembly (find_and_fix_threading_errors.exel0x9257) Call Stack |

267 bool video::next frame() <. Bfind_and_fix_threading_errors.exelnext_fral
268 |

269 if{!running) return fals=se;

270 g updates++; // Fast but inaccurate counter. The data race h

271 if (!threaded) while{loop once(this));

272 else if (g handles=[1]) {

273 SetEvent (g handles[1]); Problematic line in source code

274 YIELD TC THREAD();

Call stacks

1
q

A
|Rear.l - Thread TBBE Worker Thread (6004) (find_and_fix_threading_errors.exelnext_frame - winvideo.h:270) w [
|winvia -~ h| Disassembly (find_and_fix_threading_errors.exel0x924e) Call Stack |
267 1 '20::next frame () - Nfind_and_fix_threading_errors.exelnext_fral
All code locations for a prOblem find_and_fix_threading_errors.exeloperato
265 if (!running) return false;
270 g_updates++; // Fast but inaccur Gujitch to disassembly for more details
271 if (!threaded) while{loop once(th
272 el=e if{g_handles[l]} {
273 SetEvent (g_handles[1]);
274 YIELD TC THREAD(); -
T4 >
7/23/2014 iﬁ@ | 9

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Agenda

Intro to Intel® Inspector XE

Introduction

Memory problem analysis
Threading problem Analysis
Preparing setup for analysis
Managing analysis results
Advanced Features

Summary

@ | o

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Memory problem Analysis

Analyzed as software runs
« Data (workload) -driven execution
* Program can be single or multi-threaded
« Diagnostics reported incrementally as they occur

Includes monitoring of:
 Memory allocation and allocating functions
« Memory deallocation and deallocating functions
« Memory leak reporting
* Inconsistent memory APl usage

Analysis scope
* Native code only: C, C++, Fortran
* Code path must be executed to be analyzed
 Workload size affects ability to detect a problem

7/23/2014

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Memory problems

Memory leak

* ablock of memory is allocated

* never deallocated

* not reachable (there is no pointer available
to deallocate the block)

» Severity level = (Error)

Memory not deallocated

* ablock of memory is allocated

* never deallocated

 still reachable at application exit (there is a
pointer available to deallocate the block).

« Severity level = (Warning)

Memory growth

* ablock of memory is allocated

* not deallocated, within a specific time
segment during application execution.

» Severity level = (Warning)

7/23/2014

// Memory leak

char *pStr = (char*) malloc(512);
return;

// Memory not deallocated

static char *pStr = malloc(512);
return;

// Memory growth

// Start measuring growth
static char *pStr = malloc(512);
// Stop measuring growth

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Memory problems

Uninitialized memory access /i TS e Geiey Aseese
* Read of an uninitialized memory location void func()
{
int a;
int b = a * 4;
h
Invalid Memory Access fi Dnvalisl [Riery Aecess
* Read or write instruction references memory | cnar *pstr = (char*) malloc(20);
that is logically or physically invalid free(pStr);
strcpy(pStr, "my string");
Kernel Resource Leak Jf Termel Heselres Ll
« Kernel object handle is created but never HANDLE hThread = CreateThread(e,
closed 8192, worke, NULL, ©, NULL);
return;
GDI Resource Leak // GDI Resource Leak
* GDI object is created but never deleted HPEN pen = CreatePen(@, @, 0);
return;

7/23/2014

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Analyze Memory Growth
During Analysis:

Set Start Point

Fz. Reset Growth Tracking Set End Point

<7 Measure Growth

%, Reset Leak Tracking
=¥ Find Leaks

(I

Detect Memory Problems

& Target Analysis Type || & Collection Log m

Problems

[a & Type Sources Modules Object .. State
. HP @ Memory leak ixe_mem_growth.cpp ixe_mem_growth.e.. 144 R New
AnalyS|S ReSUItS: P & Memory growth [Unknown]; ixe_mem_gro.. Unknown; ixe_mem... 272 Re New
Start memory growth det... [Unknown] Unknown Fr Mot fixed
Memory Growth Memory growth Ixe_mem_growth.cpp:7 ixe_mem_growth.e.. 272 Y New
Problem Set End memory growth det.. [Unknown] Unknown F Mot fixed
L]
41 1of1 b
Description Source Function Module Object Size Offset
COde locatlon for Allocation site ixe_mem_growth.cpp:7 transaction ixe_mem_growth.exe 272
eaCh bIOCk Of memory 5 { ixe mem growth.exe!transaction
& char *str; ixe mem growth.exe!main - ixe m
that was allocated bUt 7 str = (char*) malloc(lg); ixe mem growth.exe! tmainCRTSta
8 } ixe mem growth.exe!mainCRTStart
nOt de_allocated =) kernel32.dl]l!BaseThreadInitThun
during the time period

7/23/2014

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

On-demand leak detection

* Check code regions between points
B Stop '‘A' and 'B' for leaks

% Close Set Start Point * Check daemon processes for leaks

%, Reset Growth Tracking * Check crashing processes for leaks

" Measure Growth Set End Point

%, Reset Leak Tracking

¥ Find Leaks £:7

Detect Memory Problems

& Target Analysis Type || B¢ Collection Log

. . Problems
AnalySIS Resu lts' Da & Type Sources Modules Object Size State
=P @ Memeory leak ixe_mem_growth.cpp ixe_rnem_growth.exe 192 R Mew
M emo ry Lea k Memory leak e_mem_growth.cppd ixe_mem_growth.exe 192 1 Mew
S_hown during run HP2Z A Memory growth [Unknown]; ixe_mem_gr... Unknown; ixe_merm_gr... 368
time 41 1of1 [

Description Source Function Module Object Size Offset

Allocation site ixe_rmem_growth.cpp:? transaction ixe_mem_growth.exe 192
3 { ixe mem growth.exe!transaction
char *str; ixe mem growth.exe!main - ixe
3tr = (char*) malloc(l&); ixe mem growth.exe! tmainCRTISt
ixe mem growth.exe!mainCRTStar
malloc{4): kernel32.dll!BaseThreadlnitThu

7/23/2014 intel' | 15

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Agenda

Intro to Intel® Inspector XE

Introduction

Memory problem analysis
Threading problem Analysis
Preparing setup for analysis
Managing analysis results
Advanced Features
Summary

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Threading problem Analysis

Analyzed as software runs
« Data (workload) -driven execution
* Program needs to be multi-threaded
« Diagnostics reported incrementally as they occur

Includes monitoring of:
 Thread and Sync APIs used
 Thread execution order
* Scheduler impacts results
« Memory accesses between threads

Analysis scope
* Native code: C, C++, Fortran
* Managed or mixed code: C# (NET 2.0 to 3.5, .NET 4.0 with limitations)
 Code path must be executed to be analyzed
* Workload size doesn't affect ability to detect a problem

7/23/2014

Optimization Notice

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Data race

CRITICAL_SECTION cs;

// Preparation

int *p = malloc(sizeof(int)); // Allocation Site

*p = 0;

InitializeCriticalSection(&cs);

Write -> Write Data Race

Thread #1

Thread #2

*p = 1; // First Write

EnterCriticalSection(&cs);
*p = 2; // Second Write
LeaveCriticalSection(&cs);

Read -> Write Data Race

7/23/2014

Thread #1

Thread #2

int x;
X = *p; // Read

EnterCriticalSection(&cs);
*p = 2; // Write
LeaveCriticalSection(&cs);

Optimization Notice

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Deadlock

CRITICAL_SECTION csi;
CRITICAL_SECTION cs2;
int x = 0;
int y = 0;

InitializeCriticalSection(&csl); // Allocation Site (csl)
InitializeCriticalSection(&cs2); // Allocation Site (cs2)

Thread #1 Thread #2
EnterCriticalSection(&csl); EnterCriticalSection(&cs2);
X++; y++;
EnterCriticalSection(&cs2); EnterCriticalSection(&csl);
y++; X++;

LeaveCriticalSection(&cs2);
LeaveCriticalSection(&csl);

LeaveCriticalSection(&csl);
LeaveCriticalSection(&cs2);

Deadlock

1. EnterCriticalSection(&cs1); in thread #1

2. EnterCriticalSection(&cs2); in thread #2

7/23/2014

Optimization Notice

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Lock Hierarchy Violation

EnterCriticalSection(&cs1); in thread #1
EnterCriticalSection(&cs2); in thread #1
EnterCriticalSection(&cs2); in thread #2

-l

EnterCriticalSection(&cs1); in thread #2

Agenda

Intro to Intel® Inspector XE

Introduction

Memory problem analysis
Threading problem Analysis
Preparing setup for analysis
Managing analysis results
Advanced Features

Summary

@ |

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Prepare build for analysis

Compile
* Use dynamically linked thread-safe runtime libraries
/MDd on Windows
* Generate symbolic information
/ZI on Windows
« Disable optimization
/Od on Windows

Link
* Preserve symbolic information
/DEBUG on Windows

« Specify relocatable code sections
/FIXED:NO on Windows

Prior to using Inspector XE, sources should compile & link cleanly

7/23/2014

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Search directories

Inspector XE needs to locate paths to:
* Binary files
* Symbol files
* Source files

No need for extra search directories configuration if:
* Binary, symbol and source files were not modified and moved
* Results are collected and viewed on the same machine

find_and_fix_memory_errors - Project Properties E

[Target l Suppressions l Binary/Symbol Search] Source Search l

Additional Source File Locations

Specify local directories to include in the search. Press F1 for more details.

Search Directories

Chprojects\tachyo n\source5|

7/23/2014

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Correctness analyses overhead

Inspector XE tracks
 Thread and Sync APIs
« Memory accesses

Inspector XE performs binary instrumentation using PIN

* Dynamic instrumentation system provided by Intel
(http://www.pintool.org)

* Injected code used for observing the behavior of the running process
* Source modification/recompilation is not needed

¥

Increases execution time and memory consumed (potentially
significantly)

The Inspector XE dilates both time and memory consumed significantly!

7/23/2014 i@ | 23

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

http://www.pintool.org/

Workload guidelines

Use small data set
* Smaller number of threads
* Minimize data set size (e.g. smaller image sizes)
* Minimize loop iterations or time steps
* Minimize update rates (e.g. lower frames per second)

Use small but representative data set
* Only actually executed code paths are analyzed

Scale down workload to speed up analysis!

7/23/2014

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Agenda

Intro to Intel® Inspector XE

Introduction

Memory problem analysis
Threading problem Analysis
Preparing setup for analysis
Managing analysis results
Advanced Features
Summary

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Include and Exclude modules

My Inspector XE Results - find_and_fix_threading_errors - Project Propertie: L& ﬂ

J Target [Suppressions] Binary/Symbol Search l Source Search]

Launch Application 3. Choose modules you want to l
Specify and configure the application executable ¢ jnclude or exclude from ana[ysis

ryay - -

Modules
C:\home\tbb_debug.dll]

C\home\projects\tachyon_insp_xe\tachyon_insp_xe\vc8\My Inspector XE Res

Result location:
Chhomel\projects\tachyon_insp_xe\tachyon_insp_xe\vc8\My Inspector XE Res

-~ Advanced

() Do not apply suppressions Add new line

Suppressions: @ Apply suppressions

Child application:

Enable collection progress information

(") Include only the following module(s) l oK] ’ Cancel l

(@ Exclude the following module(s):

2. Press Modify

Modules:

1. There are two options:
- Include modules of interest

-

- Exclude unnecessary modules ok || cancel |

7/23/2014

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Filtering - focus on what is important

Filter — Show only one source file

Problems

la @& Type Sources Modules - St. § Source

=Pl @ Mismatched allocation/de... find_and_fix_memory... find_and_fix_mem... apl.cpp

Fe
=HpP2 @ Memory leak find_and_fix_memory... find_and_fix_mem... 28672 R
Fe

find_and_fix_memory_error...

T O 7% —

Invalid memory access find_and_fix_memory... find_and_fix_mem... util.cpp
Memaory not deallocated api.cpp; util.cpp; vide ... find_and_fix_mem ... video.cpp
Memaory not deallocated video.cpp:82 find_and_fix_mem... 8192 Fe Module
Memaory not deallocated util.cpp:163 find_and_fix_mem... 1808 R find_and_fix_memory_error.. 4
Memory not deallocated api.cpp:218 find_and_fix_mem.. 376 Fe
State b4

_".”‘y related errors are shown

Type Sources Modules Object.. St. § Warning 1| 58
S S Memory not deallocated api.cpp; util.cpp; vide... find_and_fix_mem... 10376 R Type
Memory not deallocated video.cpp:82 find_and_fix_mem... 8192 R Memory not deallocated 1
Memory not deallocated util.cpp:163 find_and_fix_mem... 1808 Fe Al
Memory not deallocated api.cpp:218 find_and_fix_mem... 376 Fe api.cpp 1 item(s)
Module
find_and_fix_memory_error...
~ State
7/23/2014

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Suppressions: manage false errors

Suppressions are marked

or hidden entirely
a Type Sources

Problems

Modules

Name: Suppression Save in:

Choose problem type =P &

Memaory growth [Unknown]; ixe_mem...

st Lype; lMemory leak =

Rule:

Objec... St..

Unknown; ixe_m... 272 Fe

Code Location Descr.. Number of Frame... Start Frame in Rule

Allocation site - _ ixe_mem_growth.exeltransaction - i...

Select Stack Frame(s)

Create suppression rule based on selected call stack frame(s):

Choose stack frames

to match the rule Use in Rule Module Function Source

| ’ B ‘ixe_mem_grow... ixe_mem_gro N v |7 v

i iXe_mem_grow... main ixe_mem_gro ...
I ixe_mem_grow.. _tmainCRTStart.. crtexe.c

I ixe_mem_grow.. mainCRTStartup crtexe.c

i~ kernel32.dll BaseThreadlInit... * (any)

Line

16
555
370

* (any)

e Suppressions are saved in one or more files
Tool suppresses all files from specified folder(s)

7/23/2014

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Agenda

Intro to Intel® Inspector XE

Introduction

Memory problem analysis
Threading problem Analysis
Preparing setup for analysis
Managing analysis results
Advanced Features

Summary

@ |

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Debugger integration

Break into debugger

Analysis can stop when it detects a
problem

User is put into a standard
debugging session

Windows*

Microsoft* Visual Studio Debugger

Linux*

gdb

7/23/2014

Optimization Notice

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

2%-20% | Detect Leaks
O
—(g] ==l ctect Memory Problems
200-80x Locate Memory Problems

Analysis Time Overhead

Detect Memory Problems Copy

Medium scope memory error analysis type. Increases the load on
the system and the time and resources required to perform
analysis. Press F1 for more details.

() Analyze without debugger

Run an analysis and report all detected problems. Use
to view correctness issues without stopping in the
debugger to examine them.

@ Enable debugger when problem detected

Run an analysis under the debugger and stop every
time a problem is detected. Use to allow investigation
of every problem detected.

m

(") Select analysis start location with debugger

Run target application under the debugger with
analysis disabled until you choose to turn on analysis.
Before starting, set a code breakpoint to stop execution
prior to where you want analysis to begin. Sele...

Command Line Interface

e inspxe-clis the command line:

— Windows: C:\Program Files\Intel\Inspector XE
\bin32\1nspxe-cl.exe

— Linux: /opt/intel/inspector_xe/bin64/inspxe-cl
e Help:
inspxe-cl -help

« Setup command line with GUI

E Configure Analysis Type

[A Amas Ty

or XE 2015

220 Detect Leais o Start
-« =
(% Ciose]

-— [T Detect Memory Problem
el

Memary Ermor Analysis w 20e-80x Locate Memory Problems .

Analysis Time Overnead Memaory Overhiead S8

Detect Memory Problems

Copy =
Medium scope memory eror analysis type. Increases the load on the '
gystam and the time and resources required 1o perform analyss, Pregs
{: r'hd L' F1 for more details. i
omimd Ine... : .
| Detect Uninitialized memary reads

| Revert to previows uninitialiZéd-mamory algorithm (not recommenc
W Detert memory beaks upan application exit
_Proji:f."l Properties.,
+| Datect rasource laaks

b I Command Line...

7/23/2014

Optimization Notice

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Automated regression testing

Data collection from script Create a baseline

« Command line interface (CLI) Collect result /
for running analysis g'g T
* Child process analysis g'g
_ g§ Create
Reporting CLI 4 -
* Exporting results (pack and send)
_ Change source code
* Textreports: XML, CSV and plain text ¥
* Detect new problems automatically Collect

result data

Report
result data

Check for
regressions

Check for regressions

Interpret
result data

7/23/2014

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Using the Intel® Inspector XE with MP!

« Compile the inspector example.c code with the MPI scripts

e Use the command-line tool under the MPI run scripts to gather
report data

mpirun -n 4 inspxe-cl —--result-dir insp_results
-collect mil -- ./insp_example.exe
« Outputis: a results directory for each MPI rank in the job
Is | grep inspector_results on Linux

e Launch the GUI and view the results for each particular rank
inspxe-gui inspector_results.<rank#> on Linux

7/23/2014

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Intel Inspector XE: Summary

Advanced correctness checking
* Find issues that traditional testing misses
 Dynamic memory and threading error detection
Automated regression
« Command line interface
« Suitable for scripting
Wide analysis capabilities
* GUI data management
* Debugger integration

Ship high quality software products!

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED *AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2014, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’'s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding

the specific instruction sets covered by this notice.
Notice revision #20110804

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

